44.2 F
Delaware
Saturday, February 27, 2021

Married UD Profs Partner on Research Aimed at Identifying Weaknesses in Coronavirus

Must Read

UD ramps up restrictions designed keep COVID cases from continuing to climb

The university brought 4,000 students back to campus for spring and one of the new rules says they are not allowed to have visitors.

New program allows people to dine out and help raise money for Do More 24 campaign

Restaurants will offer specials, and a portion of the sales will be donated, but that portion will be paid by a sponsor.

Here’s a breakdown of DIAA state wrestling championships brackets

The 132-pound weight class may be the most exciting, with two former state champions in the bracket.
Avatar
TSDhttps://new.delawarelive.com/townsquaredelaware/
TSD: Delaware’s best take on events, community and local life

UD professors Juan Perilla and Jodi Hadden-Perilla are investigating the molecular structure of the novel coronavirus. The hope is that their findings will help lead to a vaccine. Photo courtesy of UD

Cutting edge research is underway on the campus of University of Delaware, where two professors are investigating the molecular structure of the novel coronavirus — and its weaknesses — that might lead to a vaccine.

Juan Perilla and Jodi Hadden-Perilla, both assistant professors in UD’s Department of Chemistry and Biochemistry, were awarded a one-year, $200,000 grant from the National Science Foundation just last week.

The husband and wife team will use the grant to advance their research using high-tech supercomputing tools that previously led them to new insights into other viruses that harm human health.

The funding comes through the NSF’s Rapid Response Research (RAPID) program, which NSF says are used in cases of “severe urgency,” including quick responses to natural disasters.

 

The UD researchers are collaborating with investigator Tyler Reddy, also a computational virologist at Los Alamos National Laboratory, who has collaborated with them on previous studies. Seven other researchers are working on the project in New Mexico.

The researchers will use computer simulations to analyze the molecular structure of the virus that has led to the current worldwide pandemic. Learning more about the structure “is now essential to provide understanding of viral entry and infection of human cells, a first step in developing novel drugs and vaccines to combat” the disease, Perilla and Hadden-Perilla wrote in a summary of their proposal.

“If you understand how something works, you can understand how to make it stop working,” Hadden-Perilla said of the need to analyze how the virus functions and how it infects people in order to disrupt it. “We need to know the atomistic structure so that researchers can determine ways to target it as they work to develop treatments and vaccines.”

Working remotely, using a robust infrastructure that connects them to their lab computers and supercomputing resources, the research team, which includes UD students, will focus on using supercomputers to perform molecular dynamics (MD) simulations at the atomic level.

 

MD simulations allow researchers to study the way molecules move in order to learn how they carry out their functions in nature. Computer simulations are the only method that can reveal the motion of molecular systems down to the atomic level and are sometimes referred to as the “computational microscope.”

Viruses aren’t static, Perilla noted, so simulations of the SARS-CoV-2 (the technical name of the virus) are key to understanding its components and functions.

The NSF grant provides the research team with time on the Frontera supercomputer at the Texas Advanced Computing Center at the University of Texas at Austin. Other COVID-19 researchers are also using Frontera, one of the most powerful supercomputers in the world, as part of the new public-private High-Performance Computing Consortium formed to combat the virus.

 

In their grant application, Perilla and Hadden-Perilla said their team’s work could have an immediate impact on the pandemic. To enhance that potential, the researchers plan to disseminate their results “broadly and quickly,” they said, estimating that they could have the basics of their model — a first step in the process — in place within a few weeks.

“We have a lot of experience with this kind of research,” said Perilla, who has used molecular dynamics simulations to investigate other viruses in recent years. 

He was part of a team that gained new insights into HIV, the virus that causes AIDS, by studying the capsid, the protein shell that encloses the viral genome, and its interactions with a specific protein. The research marked an important advance in better understanding the mechanism of HIV infection. 

 

Perilla and Hadden-Perilla used similar high-tech tools to study the hepatitis B virus, again focusing on the structure of the capsid and how it moves, distorts and interacts with its environment. Those simulations were able to reveal a more complete picture of the capsid than studies done with experimental microscopes.

In the case of their latest work, Hadden-Perilla called it “a critical moment” for research being conducted in the midst of a pandemic, a time when both scientists and the public need as much accurate and complete information as possible. 

“As soon as we know, we’re going to share,” she said.

 

- Thank you to our sponsor -
- Thank you to our sponsor -
- Thank you to our sponsor -

Latest News

UD ramps up restrictions designed keep COVID cases from continuing to climb

The university brought 4,000 students back to campus for spring and one of the new rules says they are not allowed to have visitors.

New program allows people to dine out and help raise money for Do More 24 campaign

Restaurants will offer specials, and a portion of the sales will be donated, but that portion will be paid by a sponsor.

Here’s a breakdown of DIAA state wrestling championships brackets

The 132-pound weight class may be the most exciting, with two former state champions in the bracket.
- Thank you to our sponsor -
- Thank you to our sponsor -

More Articles Like This

%d bloggers like this: